A A A A A A A A A A A A A A A A A A A	The Hashemite Ur Faculty of Engine Course Syllal	eering	
Course Title: Department: Prerequisite(s): Instructor:	Strength of Materials (1) Mechanical Engineering Statics (110401211) Eng. Ahmad Bani yaseen	Course Number: Designation: Instructor's Office:	2104021230 Compulsory E3102
Instructor's e-mail: Office Hours:	ahmadi_ah@hu.edu.jo		13102
Course description:	The Machine Types of loads strain, normal and bending beams, combined stresses, stress and strain, thin-walle beams, buckling of columns.	g moment diagrams, tors shearing stress and strain	sion, bending of , Mohr's circle of
Textbook(s):	Mechanics of Materials, F. P.	Beer et al, Eighth edition,	<u>Mc Graw Hill.</u>
Course Outcomes:	 mechanical systems (a moments, torsion torque Know the definitions of shear strain,etc. Analyze the stress and a that can withstand a give Recognize the different relations to stress and stream indeterminate structure loading, torsional torque Construct shear and b analyze the resulted street. Be familiar with the strest find the principal stressed 	types of loading and the exial loading, transverse es). normal stress, normal stra strain in order to design me en set of loading. It types of deformations train. e statically determinate s under different types of and transverse loading). ending moment diagrams esses. ess transformations and M es and the maximum shear tion to the internal momer	eir effects on the loading, bending ain, shear stress, echanical system and study their and statically of loading (axial of for beams and Mohr's circle and stress.
Class schedule: Grading Plan:	Second Exam (25 Quizzes (10	ek; 75 minutes each 5 Points) 5 Points) 9 Points) 9 Points)	

Course designation according to the professional component:

Professional Component	Course Designation	
General Education		
Basic Science and Mathematics		
Engineering Science	\checkmark	
Engineering Design	\checkmark	

Course relationship to program outcomes:

	MEI	Program Outcomes
\checkmark	1.	Apply knowledge of science, mathematics (including multivariate calculus, linear algebra, differential equations) and engineering fundamentals to mechanical engineering applications. (a, ME1)
	2.	Design and conduct experiments, as well as analyze and present results in a professional manner. (b)
\checkmark	3.	Design, model, analyze and realize a component, system (thermal or mechanical), or process to meet specific requirements and realistic constraints. (c, ME2)
	4.	Communicate effectively, and function in multidisciplinary teams. (d, g)
	5.	Identify, formulate, and solve engineering problems. (e)
\checkmark	6.	Understand professional and ethical issues and the responsibilities of the engineering practice. (f)
	7.	Recognize contemporary issues and environmental, cultural, and economical consideration of the engineering profession. (j, h)
	8.	Identify the need for professional development and engage in life-long learning. (i)
	9.	Use the techniques, skills, and modern engineering and computing tools necessary for engineering practice. (k)
	10.	Apply the basics of statistics and probability. (ME3)
	11.	Recognize the need and engage in solving national environmental issues.

Course relationship to ABET criteria for mechanical engineering programs:

	Programs must demonstrate that graduates have:		
	A. Knowledge of chemistry and calculus-based physics with depth in at least one;		
	B. The ability to apply advanced mathematics through multivariate calculus and differential		
	equations;		
\checkmark	C. Familiarity with statistics and linear algebra;		
V	D. The ability to work professionally in both thermal and mechanical systems areas including the design and realization of such systems.		

Prepared by: Eng. Ahmad Bani yaseen

Date: 17/July/2022

	ontents	s and Approximate timeline	
Chapter	1	Introduction - Concept of Stress	
-	1.1	Review of the methods of statics	
	1.2	Stresses in the members of a structure	
	1.3	Stress on an oblique plane under axial loading	4
	1.4	Stress under general loading conditions;	
		components of stress	
	1.5	Design considerations	
Chapter	2	Stress and strain – axial loading	
-	2.1	An introduction to stress and strain	
	2.2	Statically indeterminate problems	
	2.3	Problems involving temperature changes	
	2.4	Poisson's ratio	7
	2.5	Multiaxial loading: Generalized Hooke's law	/
	2.7	Shearing strain	
	2.8	Deformation under axial loading- Relationship	
		between v, E and G	
	2.9	Stress concentrations	
Chapter	3	Torsion	
	3.1	Circular shafts in torsion	
	3.2	Angle of twist in the elastic range	
	3.3	Statically indeterminate shafts	4
	3.4	Design of transmission shafts	
	3.5	Stress concentration in circular shafts	
Chapter	4	Pure Bending	
_	4.1	Symmetric member in pure bending	
	4.2	Stresses and deformations in the elastic range	
	4.3	Deformations in a transverse cross-section	4
	4.4	Members made of composite materials	
	4.5	Stress concentrations	
	4.7	Eccentric axial loading in a plane of symmetry	
Chapter	5	Analysis and design of beams for bending	
•	5.1	Shear and bending-moment diagrams	1
	5.2	Relations among load, shear and bending moment	
Chapter	6	Shearing stresses in beams and thin-walled	
_		members	
	6.1	Horizontal shearing stress in beams	3
	6.3	Longitudinal shear on a beam element of arbitrary	
		shape	
Chapter	7	Transformations of stress and strain	
	7.1	Transformation of plane stress	
	7.2	Mohr's circle for plane stress	5
	7.3	Principal stresses : Maximum shearing stress	5
	7.4	General state of stress	
	7.6	Stresses in thin-walled pressure vessels	
Chapter	8	Principal stresses under a given loading	2
~-	8.3	Stresses under combined loading	-
Chapter	9	Deflection of beams	1
	9.1	Deformation under transverse loading	-
	10		
Chapter	10 10.1	Columns Stability of Structures	1