The Hashemite University الجامعة الهاشمية الجامعة الهاشمية المحامعة الهاشمية Deanship of Academic Development and International Outreach عمادة التطوير الأكاديمي التواصل الدولي المحامة التطوير الأكاديمي

Syllabus*: Theory of Computation and Code (151001240) Second Semester 2022 /2021.

COURSE INFORMATION			
Course Name: Theory of Computation		Course Code: 151001460	
Semester: Second Section:		Section: 1 and 2	
Department: Department of Computer Science		Core Curriculum: Mandatory	
Faculty: Faculty of Prince Al-H	ussein bin Abdullah		
II of Information Technology			
Day(s) and Time(s): Sunday,	Tuesday and	Credit Hours: 3	
Thursday	У	Prereguisites : Discrete Mathematics (11010)1152)
9:00-10:0	00 and 10:00-11:00		,
Classroom: IT 303	IT 201		
	COURSE DES	SCRIPTION	
The goal of this course is to be	egin to understand th	e foundations of computation. Various mode	els of
computation exist, all of which capture some fundamental aspect of computation. We will concentrate on			ate on
three classes of models: models with finite amount of memory (finite-state automata); models with stack			stack
memory (push-down automata);	; and unrestricted mo	odels (Turing machines). The notion of a f	ormal
grammar arises from the need to	o formalize the inform	al notions of grammar and language. Many fe	ormal
grammars were invented: right-li	near grammars, conte	xt-free grammars and unrestricted grammars.	These
grammars can be placed in a na	atural hierarchy. Surp	risingly, there is a deep connection between	these
grammars, the strings they genera	ate (their language), an	d the models of computation introduced above	. This
course will also briefly cover the	impact of formal langu	age theory for many computer science applica	tions:
in compilers, natural language processing, and program verification.			
DELIVERY METHODS			
The course will be delivered through an active classroom based discussion using Power point slides, Videos,			
and group discussion.			
The whole material is uploaded on Moodle and the quizzes are held inside the class room using Moodle.			
NOTE !!! If there is any cancellation on formal announced schedule the lecture will be given Online through			
Microsoft teams.			
FACULTY INFORMATION			
Name	Ebaa Fayyoumi		
Academic Title:	Associate Profes	ssor	
Office Location:	IT 325		

Telephone Number:	+962 5 390 3333 ex. 309
Email Address:	enfayyoumi@hu.edu.jo
Office Hours:	Sunday, Tuesday and Thursday 12:00-13:00
	Please send an e-mail (enfayyoumi@hu.edu.jo) to meet
	at any other time.
	The Microsoft teams is active for all my classes. They may
	chat me and call me at any time we previously agree about
	it.

REFERENCES AND LEARNING RESOURCES

Required Textbook

- 1. Introduction to the Theory of Computation, Michael Sipser, Thomson Course Technnology, Boston, Third edition, 2013.
- **2.** Introduction to Languages and the Theory of Computation, John Martin, McGraw-Hill, Second edition, 2003.

Additional Reading

- 1. Introduction to Automata Theory, Languages, and Computation, John Hopcroft, Rajeev Motwani, Jeffrey Ullman, Addison Wesley, Third edition, 2007.
- 2. An Introduction to Formal Languages and Automata, Peter Linz, Jones and Bartlett publishers, Third edition, 2001.
- **3.** Elements of the Theory of Computation, Harry Lewis and Christos Papadimitriou, Prentice-Hall, Second edition, 1998.

Core Curriculum Learning Outcomes	Program Learning Outcomes	Course Objectives	Course Student Learning Outcomes	Assessment Method
	CS SLOs SLO#1 Analyze a complex computing problem and to apply principles of	Understand the foundations models with finite amount of memory (finite- state automata).	SLO#1 and SLO#2	Quiz and Exam
	computing and other relevant disciplines to identify solutions. SLO#2 Design,	Understand the foundations models with stack memory (push-down automata).	SLO#1 and SLO#2	Quiz and Exam
	implement, and evaluate a computing-based solution to meet a given set of	Understand the foundation of unrestricted models (Turing machines).	SLO#1 and SLO#2	Quiz and Exam

STUDENT LEARNING OUTCOMES MATRIX*

			1
computing	A 1 11.		
requirements in the	Ability to use		Quiz and
content of the	the informal		Exam
programs	notions of	SLO#1 and SLO#4	LAdin
discipline.	grammar and		
	language.		
SLO#3	A 1. 11:4 4		
Communicate	Ability to		
effectively in a	discuss/explain		
variety of	of many formal		
professional	of many formal		
contexts.	grammars:	SI O#1 and SI O#6	Ouiz and
SI 0#4	right-filleal	SLO#4 and SLO#0	Exam
SLO#4 Pocognizo	grammars,		
professional	context-nee		
responsibilities	grammars and		
and make	grammars		
informed	grammars.		
iudgments in	Understand the		
computing practice	impact of formal		
based on legal and	language theory		Quiz and
ethical principles	for many	SLO#4 and SLO#6	Exam
eunear principies.	computer	SEON4 and SEONO	Exam
SI 0#5	science		
Function	applications		
effectively as a	uppireations.		
member or leader			
of a team engaged			
in activities			
appropriate to the			
programs			
discipline.			
rr			
SLO#6			
Apply computer			
science theory and			
software			
development			
fundamentals to			
produce			
computing-			
based solutions			
[CS].			

ACADEMIC SUPPORT

It is The Hashemite University policy to provide educational opportunities that ensure fair, appropriate and reasonable accommodation to students who have disabilities that may affect their ability to participate in course activities or meet course requirements. Students with disabilities are encouraged to contact their Instructor to ensure that their individual needs are met. The University through its Special Need section will exert all efforts to accommodate for individual's needs. **Special Needs Section:**

Tel: Location: Email:

COURSE REGULATIONS

Participation

Class participation and attendance are important elements of every student's learning experience at The Hashemite University, and the student is expected to attend all classes. A student <u>should</u> <u>not miss more than 15%</u> of the classes during a semester. *Those exceeding this limit of 15% will receive a failing grade regardless of their performance*. It is a student's responsibility to monitor the frequency of their own absences. **Attendance record begins on the first day of class irrespective of the period allotted to drop/add and late registration. It is a student's responsibility to sign-in; failure to do so will result in a non-attendance being recorded.**

In exceptional cases, the student, with the instructor's prior permission, could be exempted from attending a class provided that the number of such occasions does not exceed the limit allowed by the University. The instructor will determine the acceptability of an absence for being absent. A student who misses more than 25% of classes and has a valid excuse for being absent will be allowed to withdraw from the course.

Plagiarism

Plagiarism is considered a serious academic offence and can result in your work losing marks or being failed. HU expects its students to adopt and abide by the highest standards of conduct in their interaction with their professors, peers, and the wider University community. As such, a student is expected not to engage in behaviours that compromise his/her own integrity as well as that of the Hashemite University.

Plagiarism includes the following examples and it applies to all student assignments or submitted work:

- Use of the work, ideas, images or words of someone else without his/her permission or reference to them.
- Use of someone else's wording, name, phrase, sentence, paragraph or essay without using quotation marks.
- Misrepresentation of the sources that were used.

<u>The instructor has the right to fail the coursework or deduct marks where plagiarism is</u> <u>detected</u>

Late or Missed Assignments

In all cases of assessment, students who fails to attend an exam, class project or deliver a presentation on the scheduled date without prior permission, and/or are unable to provide a medical note, will automatically receive a fail grade for this part of the assessment.

- Submitting a term paper on time is a key part of the assessment process. Students who fail to submit their work by the deadline specified will automatically receive a 10% penalty. Assignments handed in more than 24 hours late will receive a further 10% penalty. Each subsequent 24 hours will result in a further 10% penalty.
- In cases where a student misses an assessment on account of a medical reason or with prior permission; in line with University regulations an incomplete grade for the specific assessment will be awarded and an alternative assessment or extension can be arranged.

Student Complaints Policy

Students at The Hashemite University have the right to pursue complaints related to faculty, staff, and other students. The nature of the complaints may be either academic or non-academic. For more information about the policy and processes related to this policy, you may refer to the students' handbook.

COURSE ASSESSMENT

Course Calendar and Assessment

Students will be graded through the following means of assessment and their final grade will be calculated from the forms of assessment as listed below with their grade weighting taken into account. The criteria for grading are listed at the end of the syllabus

Assessment	Grade Weighting	Deadline Assessment
First Exam	20%	April 7 th , 2022
Second Exam	20%	May 12 th , 2022
Quizzes	20%	There are 4 quizzes
e.g. Final Exam (3)	40%	TBA

Description of Exams

Test questions will predominately come from material presented in the lectures. Semester exams will be conducted during the regularly scheduled lecture period. Exam will consist of a combination of multiple choice, short answer, match, true and false and/or descriptive questions.

Letter Grade	Description	Grade Points
A+	Excellent	4.00
А		3.75
A-		3.50
B+	Very Good	3.25
В		3.00
B-		2.75
C+	Good	2.50
С		2.25
C-		2.00
D+	Pass	1.75
D	Pass	1.50
F	Fail	0.00
Ι	Incomplete	-

WEEKLY LECTURE SCHEDULE AND CONTENT DISTRIBUTION

Chapter .	1 Introduction (Spiser Book)	Week 1	3 lecture hours
1.1 Wha	t is Theory of Computation		
2.1 Are	as of Theory of Computation		
<u>Chapter</u>	<u>1</u> <u>Mathematical Tools and Techniques</u>	Week 2/3	6 <u>lecture hours</u>
1.1 Log	ic and Proofs		
1.2 Sets			
1.3 Fun	ctions and Equivalence Relations		
1.4 Lang	guages		
1.5 Struc	ctural Induction		
<u>Chapter 2</u>	2 Finite Automata and The Languages They Accept	Week 4/5	<u>6 lecture hours</u>
2.1.1	Finite Automata: Examples and Definitions		
2.1.2	Design Several DFA machines		
2.1.3	Extended Transitivity		
2.2	Accepting Union, Intersection or Difference of two Languages		
Chapter .	3 Regular Expressions, Non-determinism	Week 6	2 lecture hours
3.1	Regular Language and Regular Expression		
	First Exam		
<u>Chapter</u>	3 Regular Expressions, Non-determinism	Week 7/8	5 Lecture hours
3.2.1	Non Deterministic Finite Automata: Examples and Definitions		
3. 2. 2	Design Several NDFA machines		
3.2.3	Extended Transitivity		
3. 2. 4	Computational Tree		
Chapter 2	2 Finite Automata and The Languages They Accept	Week 8/9/10	7 lecture hours
2.3	Distinguishing one string from another,		
2.5	How to build a Simple Computer Using Equivalence Classes		

2.4 The Pumping Lemma
2. 6 Minimizing the Number of States in a finite Automaton.
Chapter 3Regular Expressions, Non-determinismWeek 113 lecture hours
3.3 The Nondeterminisim in an NFA can be eliminate
3.4 Convert NDFA to DFA
3.5 Kleene's Theorem, Part1 and Part2.
Chapter 4Context – Free LanguagesWeek 12/136 Lecture hours
4.1 Using Grammar Rules to Define a Language
4.2 Context-Free Grammar: Definitions
4.3 Context-Free Grammar: Examples
Second Exam
4.5 Regular Languages and Regular Grammars
4.6 Derivation Trees and Ambiguity
4.7 Simplified Forms and Normal Forms.
Chapter 5Pushdown AutomataWeek 143 lecture hours
5.1 Pushdown Automata Definitions
5.2 Pushdown Automata Examples
5.3 Deterministic Pushdown Automata
5.4 A PDA from a Given CFG
5.5 A CFG from a Given PDA. Parsing
<u>Review</u> W <u>eek 15</u>
Final Exam