The Hashemite University
Faculty of Engineering Course Syllabus
Department of Allied Engineering
Sciences (DAES)

Course Title:	Numerical Analysis	Course Number:	110402303
Designation:	Compulsory	Prerequisite(s):	101203
Instructor:		Instructor's e-mail:	
Office Hours: Required Course:			

Course Description (catalog): Basic principles of numerical analysis and methods for solving different engineering problems: error analysis, solution of linear and nonlinear algebraic equations, regression and interpolating polynomials, numerical differentiation and integration, numerical solution of ordinary and partial differential equations.

Textbook(s) and/or Other Supplementary Materials:

Numerical Methods for Engineers by Chapra, S.C. and Canale, R.P., McGraw-Hill, $7^{\text {th }}$ edition.

References

Applied Numerical Analysis by Curtis F. Gerald and Patrick O. Wheatley, Addison-Wesley. $6^{\text {th }}$ edition.

An Introduction to Numerical Methods and Analysis by James F. Epperson, Wiley, 2001.

Major Topics Covered:

Topic	\# Weeks	\# of contact hours
MATLAB Basics	2	6
Error Analysis: Approximations and Round-Off Errors	1	3
Error Analysis: Truncation Errors and the Taylor Series	1	3
Roots of Equations: Bracketing and Open Methods	2	6
Linear Algebraic Special Matrices	2	6
Curve Fitting: Least Squares Regressions and Interpolation	2	6
Numerical Differentiation and Integration Formulas	2	6
Ordinary Differential Equations: Runge-Kutta Methods, boundary value and eigenvalue problems.	3	9
Total	$\mathbf{1 5}$	$\mathbf{4 5}$

*Contact hours include lectures, quizzes and exams

Specific Outcomes of Instruction (Course Learning Outcomes):

After completing the course, the student will be able to:
CLO 1: Explain and define the meaning of numerical techniques. (1)
CLO 2: Evaluate and compare the accuracy of different numerical solution methods. (1, 5)

CLO 3: Demonstrate the fundamentals of numerical methods for: Root of equations, solving systems of linear equations, Data interpretation by curve fitting and interpolation, numerical differentiation, and integration. $(1,5)$

CLO 4: Manipulate numerical solutions for $1^{\text {st }}$ and $2^{\text {nd }}$ order differential equations. $(1,5)$

Student Outcomes (SO) Addressed by the Course:

$\#$	Outcome Description	
General Engineering Student Outcomes		Contribution
(1)	$\begin{array}{l}\text { an ability to identify, formulate, and solve complex engineering problems by } \\ \text { applying principles of engineering, science, and mathematics }\end{array}$	H
(2)	$\begin{array}{l}\text { an ability to apply engineering design to produce solutions that meet specified } \\ \text { needs with consideration of public health, safety, and welfare, as } \\ \text { well as global, cultural, social, environmental, and economic factors }\end{array}$	
(3)	an ability to communicate effectively with a range of audiences	

Grading Plan:	Mid Exam	30 Points
	MATLAB based course work	20 Points
	Participation, attendance, and absence	10 points
	Final exam	40 Points

