

Hashemite University

Prince Al-Hussein bin Abdullah II Faculty for Information Technology

Department of Computer Science and its Applications

Course Syllabus

Year: 2018-2019 Semester: (2)

Course No.	Course Title	Designation	Prerequisite	Co-requisite	Credit Hours Lectures /Lab.
151001351	Algorithms	Required	151001250	-	3 / 0

Instructor Name	E-mail	Office No.	Offic e ext.	Office Hours
Dr. Sahar Idwan Dr. Ahmad Qawasmeh	sahar@hu.edu.jo ahmadr@hu.edu.jo	Dean Office IT 236	1	Sun,Tue,Thu (11-12), Mon (8-9:30) Sun,Tue,Thu (10-11), Mon (8:30-9:30)

Coordinator's Name:	Dr. Sahar Idwan
---------------------	-----------------

Course Description	This course gives a broad introduction to the analysis and design of computer algorithms. General topics to be covered include: growth of functions, recurrences, sorting, divide-and-conquer, various data structures, dynamic programming, greedy algorithms, graph searching and graph algorithms.
--------------------	---

a) Textbook (s):

1. Thomas Cormen, Charles Leiserson, Ronald Rivest, and Cliffor Stein, "Introduction to Algorithms", 3rd edition, MIT press 2009.

b) References:

- 1. Richard Johnsonbaugh, and Marcus Schaefer, Algorithms, 1st edition, Pearson edition, 2004.
- 2. Sara Baase, and Allen Van Gelder, Computer algorithms, Introduction to design and analysis", 3rd edition, Addison Wesley, 2000.
- 3. Anany Levitin, Introduction to the Design and Analysis of Algorithms, 2nd edition, Pearson International Edition.

Course Learning and Outcomes CLOs

- 1. Understand the covered algorithms and algorithmic techniques. (1, 2)
- 2. Discuss the correctness and analyze the running time of a given algorithm. (2)
- 3. Understand how searching algorithms such as BSTs and red-black tree are implemented. (2)
- 4. Analyze different sorting algorithms such as heap sort and merge sort. (2)
- 5. Define the concepts of dynamic programming and apply them to solve specific problems. (1, 2)
- 6. Define the concepts of greedy algorithms and apply them to solve specific problems. (1, 2)
- 7. Understand how graph algorithms are implemented. (1, 2)

Addressed Student Learning Outcomes (SLOs)

1 and 2

Topic Details	Course ILO number	Reference	No. of Weeks	Contact hours*
1. Introduction to analysis of algorithms	1, 2	Ch1,2,3,4	3	9
2. Sorting algorithms	4	Ch2,6,7	2	6
3. Searching algorithms	3	Ch12,13	2	6
4. Dynamic programming	5	Ch15	3	9
5. Greedy algorithms	6	Ch16	2	6
6. Graph algorithms	7	Ch23,24	3	9
Total			15	45

Assessment method	Grade	Comments
First Exam	30%	Covers Chapters 1, 2, 3, 4, 6, 7
Second Exam	30%	Covers Chapters 12, 13, 15
Final Exam	40%	Covers all topics
Total	100%	