

Syllabus: Physical Pharmacy 2 (131701333) Second Semester 20.. /20..

COURSE INFORMATION					
Course Name: Physical Pharmacy 2 (face-to-	Course Code: 131701333				
face education)	Section:				
Semester:Second	Core Curriculum: Compulsory				
Department:Department of Department of					
Pharmaceutics and Pharmaceutical Technology					
Faculty: Pharmaceutical Sciences					
Day(s) and Time(s): : According to HU courses	Credit Hours: 2				
timetable/semester	Prerequisites: Physical Pharmacy 1				
Classroom: According to HU courses	(131701317)				
timetable/semester					
COURSE DES	SCRIPTION				
This course addresses the basic physicochemic pharmaceutical materials in different physical and and delivery. Diffusion, drug release and dissolutio coarse dispersions, interfacial phenomena, rheolog	biological systems related to drug formulation on, chemical kinetics and stability, colloidal and				

DELIVERY METHODS

The course will be delivered through a combination of active learning strategies. These will include:

- PowerPoint lectures and active classroom-based discussion
- Collaborative learning through small groups acting in an interdisciplinary context.
- E-learning resources: e-reading assignments and practice quizzes through Model and Microsoft Team

	FACULTY INFORMATION
Name	Dr.Areen Sulaiman Alshweiat
Academic Title:	Assistant Professor
Office Location:	A429
Telephone Number:	3429
Email Address:	Areen.alshweiat@hu.edu.jo
Office Hours:	As announced per semester
	Please send an e-mail (Areen.alshweiat@hu.edu.jo) to
	meet at any other time.

REFERENCES AND LEARNING RESOURCES

Required Textbook

1. Sinko, P.J. Martin's Physical Pharmacy, 6 th edition, Lippincott Williams & Wilkins, 2011

Suggested Additional Resources:

- **1.** Florence A.T. and Attwood. D. Physicochemical Principles of Pharmacy, 5th Edition. 2011. Published by Pharmaceutical Press, UK
- 2. Ma, J. K., & Hadzija, B. (2013). Basic physical pharmacy. Jones & Bartlett Publishers.
- **3.** Amiji, M.M., Cook, TJ., and Mobley, W.C. Applied Physical Pharmacy, 2nd edition, McGraw Hill Education, 2014
- **4.** Dash, A.K., Singh, S. and Tolman, J. Pharmaceutics: Basic Principles and Application to Pharmacy Practice. Elsevier Academic Press, 2014

COURSE OBJECTIVES

After successful completion of this course student is expected to:

- 1. Understand and explain the physicochemical principles related to pharmaceutical systems
- 2. Understand the effects of the physicochemical principles on the properties of systems
- 3. Integrate and apply knowledge of the physicochemical principles in the development of pharmaceutical dosage forms
- 4. Identify, analyze, interpret, integrate and evaluate formulation and manufacturing problems related problems.
- 5. Determine the best storage conditions for the different dosage forms
- 6. Calculate the shelf life of different dosage forms
- 7. Develop an appropriate plan to manage and overcome inconveniences of pharmaceutical formulations and dosage forms

INTENDED LEARNING OUTCOMES

A. Knowledge and understanding

To understand the interfacial phenomena and rheological behavior of pharmaceutical systems.

A2: To understand the rationale and theory related to discussed topics and recognize their pharmaceutical application

A3: To understand the properties of pharmaceutical systems such as dispersed systems

A4: To develop knowledge about diffusion and drug release from different pharmaceutical systems

A5: To understand and explain the different mechanisms of drug breakdown and kinetics of degradation

A6: To understand and explain the different properties of pharmaceutical polymers

A7: To develop knowledge about complexations and protein binding

B. Intellectual skills

B1: To Apply information regarding discussed physical principles in designing dosage forms

B2: To develop the ability to employ the principles in solving related formulation and manufacturing problems.

B2: To Solve problems related to diffusion, drug release, dissolution, chemical kinetics, and HLB

C. Approach to practice pharmacy

C1: To implement the concepts in formulation, package, and storage of different dosage forms

C2: To deliver the patient with the best storage conditions for different dosage forms

C2: To calculate the shelf life of different dosage forms

D. Personal and professional development

D1: To develop critical thinking, problem solving and decision making abilities

D2: To develop the ability to utilize IT skills in gaining and presenting information

D3: To develop skills of team work and time management

STUDENT LEARNING OUTCOMES MATRIX*

Alignment matrix between the course objectives and the **course** learning outcomes (CLOs) with the **program** learning outcomes (PLOs).

Core curriculum learning outcomes	B.Sc. Pharmacy Program ILOs	Course Objectives	Course Student ILOs Assessment Met		Assessment Method		
			A	B	С	D	
Foundational Knowledge	Learner	1-5	A.1 A.2 A.3 A.4 A.5 A.6 A.7				 Exams Quizzes Homework Discussion
Essentials for Practice and Care	Caregiver Manager Provider	4-7		B.1 B.2 B.3	C.1 C.2 C.3		ExamsQuizzesHomeworkDiscussion

Approach to Practice and Care	Creative Thinker & Problem-Solver Educator	4-7	B.1 B.2 B3	C.1 C.2 C.3		 Exams Quizzes Homework Discussion
Personal & Professional Development	Self-aware Leader Professional	4-7	B.1 B.2 B3	C.1 C.2 C.3	D.1 D.2 D.3	 Exams Quizzes Homework Discussion

ACADEMIC SUPPORT

It is The Hashemite University policy to provide educational opportunities that ensure fair, appropriate and reasonable accommodation to students who have disabilities that may affect their ability to participate in course activities or meet course requirements. Students with disabilities are encouraged to contact their Instructor to ensure that their individual needs are met.

Special Needs Section:Tel:00962-5-3903333Extension:4209Location:StudentsAffairsDeanship/DepartmentofStudentWelfareServicesEmail:amalomoush@hu.edu.joamalomoush@staff.hu.edu.jo

COURSE REGULATIONS

Participation

Class participation and attendance are important elements of every student's learning experience at The Hashemite University, and the student is expected to attend all classes. A student <u>should</u> <u>not miss more than 15%</u> of the classes during a semester. *Those exceeding this limit of 15% will receive a failing grade regardless of their performance*. It is a student's responsibility to monitor the frequency of their own absences. Attendance record begins on the first day of class irrespective of the period allotted to drop/add and late registration. It is a student's responsibility to sign-in; failure to do so will result in a non-attendance being recorded.

In exceptional cases, the student, with the instructor's prior permission, could be exempted from attending a class provided that the number of such occasions does not exceed the limit allowed by the University. The instructor will determine the acceptability of an absence for being absent. A student who misses more than 25% of classes and has a valid excuse for being absent will be allowed to withdraw from the course.

On average, students need to spend 15 hrs of study and preparation weekly. At the beginning of the lectures, be on time and don't leave before the end of the lecture without an accepted excuse.

If you missed a class, it is your responsibility to find out about any announcements or assignments you have missed. For any clarification, please communicate your instructor at her posted office hours or by appointment. Listen well to the lecture, if you have a question, ask your instructor. You will find the course material at the course team after the lecture.

Plagiarism

Plagiarism is considered a serious academic offence and can result in your work losing marks or being failed. HU expects its students to adopt and abide by the highest standards of conduct in their interaction with their professors, peers, and the wider University community. As such, a student is expected not to engage in behaviours that compromise his/her own integrity as well as that of the Hashemite University.

Plagiarism includes the following examples and it applies to all student assignments or submitted work:

- Use of the work, ideas, images or words of someone else without his/her permission or reference to them.
- Use of someone else's wording, name, phrase, sentence, paragraph or essay without using quotation marks.
- Misrepresentation of the sources that were used.

<u>The instructor has the right to fail the coursework or deduct marks where plagiarism is</u> <u>detected</u>

Late or Missed Assignments

In all cases of assessment, students who fail to attend an exam, class project, or deliver a presentation on the scheduled date without prior permission, and/or are unable to provide a medical note, will automatically receive a fail grade for this part of the assessment.

- Submitting a term paper on time is a key part of the assessment process. Students who fail to submit their work by the deadline specified will automatically receive a 10% penalty. Assignments handed in more than 24 hours late will receive a further 10% penalty. Each subsequent 24 hours will result in a further 10% penalty.
- In cases where a student misses an assessment on account of a medical reason or with prior permission; in line with University regulations an incomplete grade for the specific assessment will be awarded and an alternative assessment or extension can be arranged.

Student Complaints Policy

Students at The Hashemite University have the right to pursue complaints related to faculty, staff, and other students. The nature of the complaints may be either academic or non-academic. For more information about the policy and processes related to this policy, you may refer to the students' handbook.

COURSE ASSESSMENT

Course Calendar and Assessment

Students will be graded through the following means of assessment and their final grade will be calculated from the forms of assessment as listed below with their grade weighting taken into account. The criteria for grading are listed at the end of the syllabus

Assessment	Grade Weighting	Deadline Assessment
First exam	25%	TBA
Second exam	25%	TBA
Quizzes- Homework	10%	TBA
Final exam	40%	TBA

Description of Exams

Test questions will predominately come from the material presented in the lectures. Semester exams will be conducted during the regularly scheduled lecture period. The exam will consist of a combination multiple-choice, short answer, match, true and false, calculation problems, and/or descriptive questions.

Homework: Will be given for the selected chapters, while the chapter in progress you are supposed to work on them continuously and submit in the announced date.

You are also expected to work on in-chapter examples, self-tests and representative number of end of chapter problems. The answers of self-tests and end of chapter exercises are given at the end of the book.

Quizzes: Announced quizzes will be given during or/and at the end of each chapter based upon the previous lectures.

No make-up exams, homework or quizzes will be given. Only documented absences will be considered as per HU guidelines.

Grades are not negotiable and are awarded according to the following criteria*:

Letter Grade	Description	Grade Points
A+	Excellent	4.00
А		3.75
A-		3.50
B+	Very Good	3.25
В		3.00
B-		2.75
C+	Good	2.50

С		2.25
C-		2.00
D+	Pass	1.75
D	Pass	1.50
F	Fail	0.00
Ι	Incomplete	-

WEEKLY LECTURE SCHEDULE AND CONTENT DISTRIBUTION

Note: For Physical Pharmacy 2 sections with 2 lecture periods per week (S/T or M/W), one lecture period covers 1.5 lecture hours (80 minutes). The course content specifies the sections in chapters of the reference textbooks will be included in quizzes, homework and exams.

Surface and Interfacial Tensions Surface free energy Surface Active Agents Micellization HLB system Applications of surface active agents Measurement of Tensions Chapter 19 Rheology Week 3-4 4 lecture hours Pharmaceutical importance Types of flow Newton's Law of Flow Non-Newtonian Systems Newton's Law of Flow Non-Newtonian Systems Thixotropy Determination of Rheological Properties Chapter 11 Diffusion Yeek 5-6 3 lecture hours Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance S lecture hours Chapter 13 Drug release and dissolution Noyes and Whitney equation Week 6-8 5 lecture hours Nitroduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Hixson-Crowell Cube	Chapter 15	Interfacial phenomena	<u>Week 1-2</u>	4 lecture hours
Surface Active Agents Micellization HLB system Applications of surface active agents Measurement of Tensions Chapter 19 Rheology Week 3-4 4 lecture hours Pharmaceutical importance	Surface a	nd Interfacial Tensions		
Micellization HLB system Applications of surface active agents Measurement of Tensions Chapter 12 Rheology Week 3-4 4 lecture hours Pharmaceutical importance 1 Types of flow 1 Newtonian Systems 1 Newton's Law of Flow 1 Non-Newtonian Systems 1 Thixotropy 2 Anti-thixotropy 2 Determination of Rheological Properties 2 Chapter 11 Diffusion Week 5-6 3 lecture hours Pharmaceutical importance 2 2 2 Fick's First Law of Diffusion 5 2 2 Steady-state Diffusion 3 2 3 2 Procedures and Apparatus For Assessing Drug Diffusion 3 2 3 2 Pharmaceutical importance 5 1 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Surface fr	ee energy		
HLB system Applications of surface active agents Measurement of Tensions Chapter 19 Rheology Week 3-4 4 lecture hours Pharmaceutical importance Types of flow Non-Newtonian Systems Non-Newtonian Systems Newton's Law of Flow Non-Newtonian Systems Non-Newtonian Systems Non-Newtonian Systems Thixotropy Anti-thixotropy Anti-thixotropy Anti-thixotropy Steture hours Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Steady-state Diffusion Steady-state Diffusion Steady-state Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Nores and Whitney equation Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Biguchi model Biopharmaceutical classification system (BCS) Second Educe Second Second Educe Educe Second Educe Secon	Surface A	ctive Agents		
Applications of surface active agents Measurement of Tensions Chapter 19 Rheology Week 3-4 4 lecture hours Pharmaceutical importance Types of flow	Micellizat	ion		
Measurement of Tensions Chapter 19 Rheology Week 3-4 4 lecture hours Pharmaceutical importance	HLB syste	em		
Chapter 19 Rheology Week 3-4 4 lecture hours Pharmaceutical importance Types of flow Newtonian Systems Newton's Law of Flow Non-Newtonian Systems Thixotropy Anti-thixotropy Determination of Rheological Properties <i>Chapter 11</i> Diffusion Week 5-6 3 lecture hours Pharmaceutical importance Fick's First Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces	Applicatio	ons of surface active agents		
Pharmaceutical importance Types of flow Newtonian Systems Newtonian Systems Non-Newtonian Systems Thixotropy Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Week 5-6 3 lecture hours Pharmaceutical importance Fick's First Law of Diffusion Steady-state Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hisson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Measuren	ent of Tensions		
Types of flow Newtonian Systems Newton's Law of Flow Non-Newtonian Systems Thixotropy Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Week 5-6 3 lecture hours Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Chapter 19	<u>Rheology</u>	<u>Week 3-4</u>	<u>4 lecture hours</u>
Newtonian Systems Newton's Law of Flow Non-Newtonian Systems Thixotropy Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Week 5-6 3 lecture hours Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Noyes and Whitney equation Hisson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Pharmac	eutical importance		
Newton's Law of Flow Non-Newtonian Systems Thixotropy Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)				
Non-Newtonian Systems Thixotropy Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Pharmaceutical importance Fick's First Law of Diffusion Steady-state Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Moyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)				
Thixotropy Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Moyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)				
Anti-thixotropy Determination of Rheological Properties Chapter 11 Diffusion Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS) ECS)				
Determination of Rheological Properties Chapter 11 Diffusion Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Moves and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS) ECS)				
Chapter 11 Diffusion Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Meek 6-8 Noyes and Whitney equation Hisson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS) Sectors affecting classification system (BCS)				
Pharmaceutical importance Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hisson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)		Ŭ Î	Week 5-6	3 lecture hours
Fick's First Law of Diffusion Fick's Second Law of Diffusion Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance Chapter 13 Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)		utical importance		
Steady-state Diffusion Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance <u>Chapter 13</u> Drug release and dissolution Moyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)		-		
Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance <u>Chapter 13</u> Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Fick's Sec	ond Law of Diffusion		
Procedures and Apparatus For Assessing Drug Diffusion Diffusion driving forces Pharmaceutical importance <u>Chapter 13</u> Drug release and dissolution Week 6-8 5 lecture hours Introduction Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Steady-sta	te Diffusion		
Diffusion driving forcesPharmaceutical importanceChapter 13Drug release and dissolutionMeek 6-85 lecture hoursIntroductionNoyes and Whitney equationHixson-Crowell Cube-Root LawFactors affecting dissolutionIntrinsic dissolution rateDrug release from matrixThe Higuchi modelBiopharmaceutical classification system (BCS)	•		Diffusion	
Pharmaceutical importanceChapter 13Drug release and dissolutionIntroductionNoyes and Whitney equationHixson-Crowell Cube-Root LawFactors affecting dissolutionIntrinsic dissolution rateDrug release from matrixThe Higuchi modelBiopharmaceutical classification system (BCS)				
Chapter 13Drug release and dissolutionWeek 6-85 lecture hoursIntroductionNoyes and Whitney equationHixson-Crowell Cube-Root LawFactors affecting dissolutionIntrinsic dissolution rateDrug release from matrixThe Higuchi modelBiopharmaceutical classification system (BCS)		_		
Noyes and Whitney equation Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)			Week 6-8	5 lecture hours
Hixson-Crowell Cube-Root Law Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Introducti	ion		
Factors affecting dissolution Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Noyes and	Whitney equation		
Intrinsic dissolution rate Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Hixson-Ci	rowell Cube-Root Law		
Drug release from matrix The Higuchi model Biopharmaceutical classification system (BCS)	Factors af	fecting dissolution		
The Higuchi model Biopharmaceutical classification system (BCS)	Intrinsic d	lissolution rate		
The Higuchi model Biopharmaceutical classification system (BCS)	Drug relea	ase from matrix		
	Biopharm	aceutical classification system (BCS)		
	-	· · · · · · · · · · · · · · · · · · ·		

Biorelevant media			
<u>Chapter 17+19</u> Dispersed system		<u>Week 9-11</u>	<u>6 lecture hours</u>
Classification			
Colloidal dispersions			
Properties of colloids			
Colloid stability			
Coarse dispersions			
Emulsions			
Suspensions			
<u>Chapter 7</u> Pharmaceutical polymers		<u>Week 12</u>	<u>2 lecture hour</u>
Definitions			
Polymer properties			
General properties of polymer solution			
Interaction of polymers with solvents			
Water-soluble polymers			
Water-insoluble polymers			
Pharmaceutical applications of polymers			
<u>Chapter 14</u> <u>Chemical kinetics and stability</u>	Week 13-15		4 <u>lecture hours</u>
Introduction			
Chemical decomposition of drugs			
Rates and orders of reactions			
Half-life and shelf life			
Determination of reaction order			
Complex reactions			
Factors influencing drug stability			
Stability testing			
<u>Chapter 10</u> <u>Complexation and protein binding</u>		<u>Week 16</u>	<u>3 lecture hours</u>
Metal ion complexes			
Inclusion complexes			
Methods of analysis of complexes			
Protein binding			
University Exams		Week	16