
Page 1

 ة الهاشـــميــــــــــــة ـــــــــــــالجامع

 عبدالله الثاني لتكنولوجيا المعلـــومات ـر الحسين بـــــــنكلية الامي

The Hashemite University

Prince Al-Hussein Bin Abdullah II Faculty for Information Technology

Department of Software Engineering

Course Syllabus

Course Title: Software Testing (Master)

Course Number: 212110121

Prerequisite: None

Time and location: 2-3:30 (Mon, Wed)

Assessment and Course Grade:

 Midterm 25%

 Homework 10%

 Summaries and Presentations 10%

 Term paper 15%

 Final Exam 40%

Instructor: Dr. Fadi Wedyan

Office No: 329

Contact Info: fadi.wedyan@hu.edu.jo

Office Hours:

Sun- Thurs: 1-2 PM, or by appointment

Course Description

The course covers in details various aspects, theories, concepts, techniques and tools of software testing

during development, maintenance and evolution. Topics include software testing at different levels (the

unit, module, and system levels), testing manageme

nt, inspections and walkthrough, model checking, designing and verifying test hypothesis, details of the

verification and validation (V&V) techniques and concepts, bugs tracking, designing test cases and testing

paths, generating of testing data. The course will be supported by practical exercises involving the

development of appropriate tests and the application of a range of testing tools.

Material

 Textbook: Pezze & Young, Software Testing and Analysis: Process, Principles and Techniques,

Wiley, 2007, ISBN: 0471455938.
 Lecture slides: Slides for the introductory lectures will be posted on Moodle.

 Papers: PDFs or links to the papers will be available in Moodle.

Additional Reading
 Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge University Press,

Cambridge, UK, ISBN 0-52188-038-1, 2008.

Course Objectives

 Provide students with the skill to select and apply a testing strategy and testing techniques that are

appropriate to a particular software system or component.

 Student will be capable of using test tools (test generation, test measurements, test running)

 Evaluate the limitations of a given testing process and provide a concise summary of those limitations

Page 2

Course Plan (Tentative)

Week no. Topic Reading

1 Overview of software testing, Theory and Principles
Ch.1 (P & Y), Ch.4

& 20 (P & Y)

2 Functional Testing
Ch. 10 (P & Y)

Ch. 4 (A & O)

3 Tools for Unit Test — JUnit Handouts

4,5
White-box testing (Structural Testing)

Introduction, Coverage Criteria, Control-flow Coverage,
Data-Flow Coverage

2.1, 2.2, 2.3 (A & O)

6
Mutation Testing

Hands on Tools- Coverage, Test Generation, Mutation
Handouts

Midterm Exam

7 Testing of OO Programs Handouts

8 Research Papers (Mutation Testing) TBD

9 Research Papers (Mutation Testing) TBD

10 Research Papers (Fault Localization) TBD

11 Research Papers (Test Generation) TBD

12 Research Papers (Testing Web Applications) TBD

13 Research Papers (Testing Smartphone Apps) TBD

14 Course Wrap up, Presentations TBD

Final Exam

Notes

 Several papers will be made available on Moodle. These papers will be selected from

top journals and conferences. The papers will be discussed in class and a student will

lead the discussion. Other students must also participate in the discussion.

Attendance is a necessary but not sufficient condition to get participation credits for

each class.

Page 3

Class Schedule – Software Testing

Mutation Testing

1. Andrews, J. H., Briand, L. C., Labiche, Y., & Namin, A. S. (2006). Using mutation analysis for assessing
and comparing testing coverage criteria. Software Engineering, IEEE Transactions on, 32(8), 608-624.

2. Siami Namin, A., Andrews, J. H., & Murdoch, D. J. (2008, May). Sufficient mutation operators for

measuring test effectiveness. In Proceedings of the 30th international conference on Software
engineering (pp. 351-360). ACM.

3. Papadakis, M., & Malevris, N. (2010, April). An empirical evaluation of the first and second order

mutation testing strategies. In Third International Conference on Software Testing, Verification, and
Validation Workshops (pp. 90-99). IEEE.

4. Just, R., & Schweiggert, F. (2015). Higher accuracy and lower run time: efficient mutation analysis using
non‐redundant mutation operators. Software Testing, Verification and Reliability, 25(5-7), 490-507.

5. Omar, E., Ghosh, S., & Whitley, D. (2017). Subtle higher order mutants. Information and Software Technology,

81, 3-18.

Testing Web, GUI, and Mobile Applications

6. Deng, L., Offutt, J., Ammann, P., & Mirzaei, N. (2017). Mutation operators for testing Android apps. Information

and Software Technology, 81, 154-168.

7. Jabbarvand, R., & Malek, S. (2017, August). µDroid: an energy-aware mutation testing framework for Android.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 208-219). ACM.

8. Moran, K., Tufano, M., Bernal-Cárdenas, C., Linares-Vásquez, M., Bavota, G., Vendome, C., ... & Poshyvanyk,

D. (2018). MDroid+: A Mutation Testing Framework for Android. Accepted to the Formal Tool Demonstration

Track at the 40th International Conference on Software Engineering (ICSE'18)

9. Alégroth, E., Feldt, R., & Kolström, P. (2016). Maintenance of automated test suites in industry: An empirical

study on Visual GUI Testing. Information and Software Technology, 73, 66-80.

10. Mesbah, A., Van Deursen, A., & Roest, D. (2012). Invariant-based automatic testing of modern web
applications. Software Engineering, IEEE Transactions on, 38(1), 35-53.

11. Mukherjee, J., Wang, M., & Krishnamurthy, D. (2014, March). Performance Testing Web Applications

on the Cloud. In Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on (pp. 363-369). IEEE.

12. Delamaro, M. E., Vincenzi, A. M. R., & Maldonado, J. C. (2006, May). A strategy to perform coverage

testing of mobile applications. In Proceedings of the 2006 international workshop on Automation of
software test (pp. 118-124). ACM.

13. Yang, W., Prasad, M. R., & Xie, T. (2013). A grey-box approach for automated GUI-model generation of

mobile applications. In Fundamental Approaches to Software Engineering (pp. 250-265). Springer
Berlin Heidelberg.

Page 4

14. Amalfitano, D., Fasolino, A. R., & Tramontana, P. (2011, March). A gui crawling-based technique for
android mobile application testing. In Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on (pp. 252-261). IEEE.

15. Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., & Memon, A. M. (2012, September).

Using GUI ripping for automated testing of Android applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (pp. 258-261). ACM.

16. Jensen, C. S., Prasad, M. R., & Møller, A. (2013, July). Automated testing with targeted event

sequence generation. In Proceedings of the 2013 International Symposium on Software Testing and
Analysis (pp. 67-77). ACM.

17. Nguyen, B. N., Robbins, B., Banerjee, I., & Memon, A. (2014). GUITAR: an innovative tool for

automated testing of GUI-driven software. Automated Software Engineering, 21(1), 65-105.

18. Lelli, V., Blouin, A., & Baudry, B. (2015, April). Classifying and qualifying GUI defects. In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference on (pp. 1-10).
IEEE.

19. McMinn, P., Wright, C. J., McCurdy, C. J., & Kapfhammer, G. (2017). Automatic Detection and Removal of

Ineffective Mutants for the Mutation Analysis of Relational Database Schemas. IEEE Transactions on Software
Engineering.

