

The Hashemite University Faculty of Engineering Course Syllabus Department of Mechanical Engineering

Course Title:	Engineering Analysis (3,0, 0)	Course Number:	120402701	
Designation:	Graduate Course	Prerequisite(s):		
Instructor:	Dr. Rami Al-Jarrah	E-mail:	ramia@hu.edu.jo	
LECTURE TIME AND LOCATION : ONLINE LECTURES USING MICROSOFT TEAMS				

Course Description:

This course is to discuss some of the concepts of Engineering Analysis. It provides a comprehensive, thorough, and up-to-date treatment of *Engineering Mathematics*. It is intended to introduce graduated students of Mechanical Engineering to areas of *Applied Mathematics* that are most relevant for solving practical problems.

Textbook(s) and/or Other Supplementary Materials:

↔ Advanced Engineering Mathematics, Erwin Kreyszig, 10th Edition, JOHN WILEY & SONS, INC., **2011.**

Major Topics Covered:

Chapter	Section		
	1.1 Basic Concepts. Modeling		
	1.2 Geometric		
CHAPTER 1	1.3 Separable ODEs. Modeling		
First-Order ODEs	1.4 Exact ODEs. Integrating Factors		
Thist-Older ODEs	1.5 Linear ODEs. Bernoulli Equation. Population Dynamics		
	1.6 Orthogonal Trajectories.		
	1.7 Existence and Uniqueness of Solutions for Initial Value Problems		
	2.1 Homogeneous Linear ODEs of Second Order		
	2.2 Homogeneous Linear ODEs with Constant Coefficients		
	2.3 Differential Operators.		
CHAPTER 2	2.4 Modeling of Free Oscillations of a Mass–Spring System		
Second-Order	2.6 Existence and Uniqueness of Solutions. 2.7 Nonhomogeneous ODEs		
Linear ODEs			
	2.8 Modeling: Forced Oscillations. Resonance		
	2.9 Modeling: Electric Circuits 2.10 Solution by Variation of Parameters		
	2.10 Solution by Variation of Parameters4.1 Systems of ODEs as Models in Engineering Applications		
CHAPTER 4	4.1 Systems of ODEs as Models in Engineering Applications 4.4 Criteria for Critical Points. Stability		
Systems of ODEs			
	11.1 Fourier Series		
	11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions		
CHAPTER 11	11.3 Forced Oscillations		
Fourier Analysis	11.4 Approximation by Trigonometric Polynomials		
Fourier Analysis	11.5 Sturm–Liouville Problems. Orthogonal Functions		
	11.6 Orthogonal Series. Generalized Fourier Series		
	11.7 Fourier Integral		
	11.8 Fourier Cosine and Sine Transforms		
	11.9 Fourier Transform. Discrete and Fast Fourier Transforms		
	6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)		
	6.2 Transforms of Derivatives and Integrals. ODEs		
	6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (<i>t</i> -Shifting)		
CHAPTER 6			
Laplace Transforms	6.4 Short Impulses. Dirac's Delta Function. Partial Fractions6.5 Convolution. Integral Equations		
	6.6 Differentiation and Integration of Transforms.		
	ODEs with Variable Coefficients		
	6.7 Systems of ODEs		
	6.8 Laplace Transform: General Formulas		
	6.9 Table of Laplace Transforms		
	12.1 Basic Concepts of PDEs		
	12.2 Modeling: Vibrating String, Wave Equation		
	12.2 modering. violating String, wave Equation		

CHAPTER 12 Partial Differential	 12.3 Solution by Separating Variables. Use of Fourier Series 12.4 D'Alembert's Solution of the Wave Equation. Characteristics 12.5 Modeling: Heat Flow from a Body in Space. Heat Equation 12.6 Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems. 		
Equations (PDEs)	12.7 Heat Equation: Modeling Very Long Bars.		
	Solution by Fourier Integrals and Transforms 12.8 Modeling: Membrane, Two-Dimensional Wave Equation		
	12.9 Rectangular Membrane. Double Fourier Series		
	12.10 Laplacian in Polar Coordinates. Circular Membrane. Fourier–Bessel Series		
	12.11 Laplace's Equation in Cylindrical and Spherical Coordinates. Potential 12.12 Solution of PDEs by Laplace Transforms		
	7.1 Matrices, Vectors: Addition and Scalar Multiplication 7.2 Matrix Multiplication		
CHAPTER 7	7.3 Linear Systems of Equations. Gauss Elimination		
Linear Algebra:	7.4 Linear Independence. Rank of a Matrix. Vector Space		
Matrices, Vectors,	7.5 Solutions of Linear Systems: Existence, Uniqueness 7.6 For Reference: Second- and Third-Order Determinants		
Determinants.	7.7 Determinants. Cramer's Rule		
	7.8 Inverse of a Matrix. Gauss–Jordan Elimination		
	9.1 Vectors in 2-Space and 3-Space9.2 Inner Product (Dot Product)		
CHAPTER 9	9.3 Vector Product (Cross Product)		
Vector Differential	9.4 Vector and Scalar Functions and Their Fields. Vector Calculus: Derivatives9.5 Curves. Arc Length. Curvature. Torsion		
Calculus	9.6 Calculus Review: Functions of Several Variables.		
	9.7 Gradient of a Scalar Field. Directional Derivative		
	9.8 Divergence of a Vector Field 9.9 Curl of a Vector Field		
CHAPTER 5	5.1 Power Series Method		
Series Solutions of	5.4 Bessel's Equation. Bessel Functions		
ODEs.	5.5 Bessel Functions. General Solution		
CHAPTER 15			
Power Series,	15.2 Power Series 15.3 Functions Given by Power Series		
Taylor Series	15.4 Taylor and Maclaurin Series		
CHAPTER 17	17.1 Geometry of Analytic Functions: Conformal Mapping		
Conformal	17.2 Linear Fractional Transformations 17.3 Special Linear Fractional Transformations		
Mapping	17.4 Conformal Mapping by Other Functions		

Grading	g Plan:
---------	---------

Mid Exam Others 30 Points 20-30 Points

Final exam 4

40-50 Points

Prepared by:

Tr. Rami Al-Jarrah

Date: 10^{*} *October 2020*