

The Hashemite University **Faculty of Engineering Course Syllabus**

Department of Mechanical Engineering

Computer Aided Design **Course Title:** 110402549 **Course Number: Designation:** Compulsory **Prerequisite(s):** 110402446

Instructor: Dr. Mahmoud Rababah **Instructor's e-mail:** m_rababah@hu.edu.jo

11:00 – 12:00: Sun. ~ Thu. **Office Hours:**

Course Description (catalog): Principles of computer-aided design (CAD); 3D modeling and viewing; parametric representations; elements transformations; free-form surfaces and curves; design and simulation using CAD systems.

Textbook(s) and/or Other Supplementary Materials:

Mastering CAD/CAM, I. Zeid, Mc Graw Hill, 2005.

References:

- 1- Principles of CAD/CAM/CAE systems, Kunwood Lee, Addison –Wesley, Boston-USA, 1999.
- 2- CATIA V5 workbook release 19, R. Cozzens, schroff development corp, 2009.

Major Topics Covered:

Topic	# Weeks	# Contact hours*
Introduction to CAD	1	2
3D Modeling approaches	1	2
Objects transformations in 3D space	2	4
Viewing Algorithms	1	2
Analytical and synthetic curves	3	6
NURBS curves	1	2
Free form surfaces	2	4
Design and simulation using CAD systems (Pro/E, solid work, CATIA, NX,	2	4
and etc.)		
Projects presentations	2	4
Total	15	30

Specific Outcomes of Instruction (Course Learning Outcomes):

After completing the course, the student will be able to:

- 1. Describe mathematically the common geometric entities used in CAD systems (a)
- 2. Apply transformations (translation, rotation, reflection, and etc..) on 3D objects (a)
- 3. Design and simulate engineering assemblies using CAD systems. (c, g)
- 4. Investigate the main features of two or more CAD systems available in the market (i, k)

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution	
General Engineering Student Outcomes			
(a)	an ability to apply knowledge of mathematics, science, and engineering	Н	
(b)	an ability to design and conduct experiments, as well as to analyze and interpret data		
(c)	an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	М	
(d)	an ability to function on multidisciplinary teams		
(e)	an ability to identify, formulate, and solve engineering problems		
(f)	an understanding of professional and ethical responsibility		
(g)	an ability to communicate effectively	M	
(h)	the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context		
(i)	a recognition of the need for, and an ability to engage in life-long learning	M	
(j)	a knowledge of contemporary issues		
(k)	an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	М	
	H=High, M= Medium, L=Low		

Grading Plan: First Exam 20 Points **Dec./3/2017** [**15:00** ~ **16:00**]

Second Exam 20 Points **To be announced**

Design Project 20 Points [Oral presentation & Report]

Due. Dec./17/ 2017 2:00 PM

Final exam 40 Points To be announced

Prepared by: Dr. Mahmoud Rababah **Date:** 18th Jan. 2017