

The Hashemite University Faculty of Engineering Course Syllabus Department of Mechanical Engineering

Course Title:	Finite Element Analysis	Course Number:	110402531
Designation:	Compulsory	Prerequisite(s):	110402303
Instructor:	Dr. Mahmoud Rababah	Instructor's e-mail:	m_rababah@hu.edu.jo
Office Hours:	10:00 – 11:00: Sun. ~ Thu.		

Course Description (catalog): Stiffness matrices, spring elements, truss elements, Beam elements, method of weighted residuals, interpolation function for general element formulation, and applications in solid mechanics.

Textbook(s) and/or Other Supplementary Materials:

- Fundamental of finite element analysis" by David V. Hutton, first edition, McGraw-Hill, 2004.
- **References:**
- 1- Finite element modeling for stress analysis, Robert D cook, Wiley, 1995.
- 2- CATIA V5 FEA tutorials, N. Zamani, schroff development corp, 2009.

Major Topics Covered:

Торіс	# Weeks	# Contact hours*
Basic concepts of the finite element methods		3
Stiffness matrices spring and bar elements		3
Truss structures, the direct stiffness method.		6
Flexure Element.	2	6
Method of weighted residuals.	2	6
Interpolation functions for general element formulation.	3	9
Applications in solid mechanics.		6
FEA using software programs	2	6
Total	15	45

Specific Outcomes of Instruction (Course Learning Outcomes):

- After completing the Finite Element Design course, the student will:
- 1. Understand the basic concept of the finite element method. (a)
- 2. Use the interpolation functions for general element formulation (\mathbf{a}, \mathbf{e})
- 3. Design a certain structure with optimal weight to withstand a specific load (c, k)
- 4. Understand the basics regarding the finite element programming (i)

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution		
General Engineering Student Outcomes				
(a)	an ability to apply knowledge of mathematics, science, and engineering	Н		
(b)	an ability to design and conduct experiments, as well as to analyze and interpret data			
(c)	an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	М		
(d)	an ability to function on multidisciplinary teams			
(e)	an ability to identify, formulate, and solve engineering problems	М		
(f)	an understanding of professional and ethical responsibility			
(g)	an ability to communicate effectively			
(h)	the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context			
(i)	a recognition of the need for, and an ability to engage in life-long learning	М		
(j)	a knowledge of contemporary issues			
(k)	an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	М		
H=High, M = Medium, L =Low				

Grading Plan:	First Exam	20 Points	Sun./12/11/2017 [14:30 ~ 16:00]
	Second Exam	20 Points	Sun./17/12/2017 [14:30 ~ 16:00]
	Project	20 Points	Due 27/12/2017
	Final exam	40 Points	To be announced

Prepared by:

Dr. Mahmoud Rababah

Date: 18th Sept. 2017