

The Hashemite University Faculty of Engineering Course Syllabus Department of Mechanical Engineering

Course Title: Thermal-Fluid (3,0,0) Course Number: 110402481

Designation: Compulsory **Prerequisite(s):**110406260,110102101

Instructor: Eng.Ahmad bani yaseen Email: ahmadi_ah@hu.edu.jo

Office Hours: By appointment.

Required Course: 3 hours lectures per week

Course Description: Basic concepts of thermodynamics, properties of pure substances, 1st and 2nd laws of thermodynamics, basic principles of fluid mechanics including fluid static and in motion, mass, momentum and energy conservation laws, internal flow in pipes, basic principles of heat transfer including modes of heat transfer, steady heat transfer.

Textbook(s) and/or Other Supplementary Materials:

Fundamentals of Thermal-Fluid Sciences, By Yunus A. Cengel, John M. Cimbala, Robert H. Turner, McGraw-Hill, Fifth Edition.

Major Topics Covered:

Topic		# Contact hours*
Basic concepts of thermodynamics, properties of pure	4	12
substances		
1st and 2nd laws of thermodynamics	6	18
Basic principles of fluid mechanics including fluid static and in	3	9
motion, mass, momentum and energy conservation laws,		
internal flow in pipes		
Basic principles of heat transfer including modes of heat	2	6
transfer, steady heat transfer.		
Total	15	45

^{*}Contact hours include lectures only.

Specific Outcomes of Instruction (Course Learning Outcomes):

After completing the course, the student will be able to:

- Understand the process of phase changing of pure substances and using the steam tables to evaluate the sensible and latent heat for phase changing.(a),(e)
- Deal with principle of the first law of thermodynamics (energy conservation and transformation).(a),(e),(k)
- Understand the Principle of the second law and the concept of thermal efficiency for the heat engines and the coefficient of performance for the heat pumps and refrigerators.(a),(e),(k)
- Be familiar with the concept of Entropy and Carnot cycle and Carnot efficiency.(a),(e)
- Understand the principle of hydrostatic forces of liquid on submerged planes and gates.(a),(e)
- Acquire the ability to calculate the fluid flow rate and velocity in pipes.(a),(e)
- Understanding the measurements principles of fluid flow rate and its velocity.(a),(e)
- Understanding the modes of heat transfer phenomena (conduction, convection and radiation) and its application in order to calculate the heat flow rates for various systems.(a),(e),(k)

Grading Plan:

Midterm Exam: 30 points Quizzes& Assignments: 30 points Final Exam: 40 points

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution		
#	Outcome Description	Contribution		
General Engineering Student Outcomes				
(a)	an ability to apply knowledge of mathematics, science, and engineering	Н		
(b)	an ability to design and conduct experiments, as well as to analyze and			
	interpret data			
(c)	an ability to design a system, component, or process to meet desired			
	needs within realistic constraints such as economic, environmental,			
	social, political, ethical, health and safety, manufacturability, and			
	sustainability			
(d)	an ability to function on multidisciplinary teams			
(e)	an ability to identify, formulate, and solve engineering problems	Н		
(f)	an understanding of professional and ethical responsibility			
(g)	an ability to communicate effectively			
(h)	the broad education necessary to understand the impact of engineering			
	solutions in a global, economic, environmental, and societal context			
(i)	a recognition of the need for, and an ability to engage in life-long			
	learning			
(j)	a knowledge of contemporary issues			
(k)	an ability to use the techniques, skills, and modern engineering tools	Н		
	necessary for engineering practice.	11		
	H =High, M = Medium, L =Low			

Prepared by: Eng. Ahmad Bani yaseen Date: 7/10/2020

Course Content:

Chantar	1	Introduction and Overview	
Chapter	1-1	Introduction and Overview Introduction to Thermal-fluid Sciences	
	1-1	Thermodynamics	
	1-2	Heat Transfer	1
	1-3 1-4	Fluid Mechanics	1
	1-4	Importance of Dimensions and units	
Chantan	2		
Chapter	2-1	Basic Concepts of Thermodynamics Systems and control Volumes	
	2-1	Properties of a System	
	2-3	Density and Specific Gravity	
	2-3 2-4	· · · · · · · · · · · · · · · · · · ·	
	2-4	State and Equilibrium	3
	2-3 2-6	Processes and Cycles Temperature and Zeroth Law of Thomps dynamics	
		Temperature and Zeroth Law of Thermodynamics Pressure	
	2-7		
CI	2-8	Pressure Measurement Devices	
Chapter	3	Energy, Energy Transfer & General Energy Analysis	
	3-1	Introduction	
	3-2	Forms of Energy	
	3-3	Energy Transfer by Heat	4
	3-4	Energy Transfer by Work	4
	3-5	Mechanical Forms of Work	
	3-6	First Law of Thermodynamics	
CI	3-7	Energy Conversion Efficiencies	
Chapter	4	Properties of Pure Substances	
	4-1	Pure Substance	
	4-2	Phases of a Pure substance	
	4-3	Phase- Change Processes of Pure Substances	4
	4-4	Property Diagrams for Phase-change Processes	4
	4-5	Property Tables	
	4-6	The Ideal-Gas Equation of state	
<u> </u>	4-7	Compressibility Factor	
Chapter	5	Energy Analysis of Closed Systems	
	5-1	Moving Boundary Work	
	5-2	Energy Balance for Closed Systems	~
	5-3	Specific Heats	5
	5-4	Internal Energy, Enthalpy, and Specific Heats of Ideal Gases	
	5-5	Internal Energy, Enthalpy, and Specific Heat of Solids & Liquid	
Chapter	6	Mass & Energy Analysis of Control Volumes	
	6-1	Conservation of Mass	
	6-2	Flow Work and the Energy of a Flowing Fluid	4
	6-3	Energy Analysis of Steady-Flow Systems	
	6-4	Some Steady-Flow Engineering Devices	
Chapter	7	The Second Law of Thermodynamics	
	7-1	Introduction to the Second Law	
	7-2	Thermal Energy Reservoirs	
	7-3	Heat Engines	4
	7-4	Refrigerators and Heat Pumps	
	7-5	Reversible and Irreversible Processes	
	7-6	The Carnot Cycle	
	7-7	The Carnot Principles	

	7-8	The Thermodynamic Temperature Scale	
	7-9	The Carnot Heat Engine	
	7-10	The Carnot Refrigerator and Heat Pump	
Chapter	11	Fluid Statics	
	11-1	Introduction to Fluid Statics	3
	11-2	Hydrostatic Forces on Submerged Plane Surfaces	<u> </u>
Chapter	12	Bernoulli and Energy Equation	
	12-1	The Bernoulli Equation	3
	12-2	Energy Analysis of Steady Flows	
Chapter	14	Internal Flow	
	14-1	Introduction	
	14-2	Laminar and Turbulent Flows	
	14-3	The Entrance Region	
	14-4	Laminar Flow in Pipes	4
	14-5	Turbulent Flow in Pipes	
	14-6	Minor Losses	
	14-7	Piping Networks and Pump Selection	
Chapter	16	Mechanisms of Heat Transfer	
	16-1	Introduction	
	16-2	Conduction	
	16-3	Convection	3
	16-4	Radiation	
	16-5	Simultaneous Heat Transfer Mechanisms	
Chapter	17	Steady Heat Conduction	
	17-1	Steady Heat Conduction in Plane Walls	
	17-2	Thermal Contact Resistance	3