

The Hashemite University Faculty of Engineering Course Syllabus Department of Mechanical Engineering

Course title:	Thermal Science Lab II 1 (0,1, 3)	Course Number:	110402426
Designation:	Compulsory	Prerequisite(s):	110402324 & 110402325
Instructor:	Dr. Mohammad Tarawneh	e-mail:	Mohammad.tarawneh@hu .edu.jo
Office Hours:	{Mon, Wed} \rightarrow (11:00 - 12:00), {Mon, Wed} \rightarrow (9:30 - 11:00)		
Coordinator:	Dr. Mohammad Tarawneh		

Course Description (catalog): Conduct experiments in teams, analyze data, and communicate experimental results in written technical reports in order to improve student knowledge and understand of basic concepts of thermodynamics, air-conditioning, internal combustion engines and solar energy, experiments done on equipment such as : condensation apparatus, boiling heat transfer apparatus, central heating system, refrigeration cycle apparatus, weather station, Four stroke spark ignition engine.

Textbook(s) and/or Other Supplementary Materials:

Thermal science -II laboratory Manual, Dept. of Mechanical engineering, The Hashemite University.

References:

1. Thermodynamics, an Engineering Approach, 8th edition, Yunus A. Cengel, and Michael A. Boles,

2. Fundamentals of Heat and Mass Transfer, F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, 7th Edition (John Wiley & Sons)

3. "Engineering Fundamentals of the Internal Combustion Engine" by W. Pulkrabek, Pearson Prentice Hall, 2nd Int. edition, 2004.

Торіс	# Weeks	# Contact hours*
Introduction to the lab [Lab policy, Equipment, Experiments, and safety]	1	3
Experiment 1: Boiling Heat Transfer	1	3
Experiment 2: Film and drop wise condensation	1	3
Experiment 3: Heating, humidification	1	3
Experiment 4: Cooling & Dehumidification	1	3
Experiment 5: Central heating system	1	3
MID EXAM Material included [Exp. 1, 2, 3,4 and 5]	1	3
Experiment 6: Air-conditioning, refrigeration cycle	1	3
Experiment 7: Weather station & solar collector	2	6
Experiment 8: Four stroke engine	1	3
Experiment 9: Emission analysis of SI engine	1	3
Design of an experiment	3	9
Total	15	45

Major Topics Covered:

*Contact hours include lectures, quizzes and exams

Specific Outcomes of Instruction (Course Learning Outcomes):

A student who successfully fulfills the course requirements will be able to:

- 1. Be familiar and with different types of boiling heat transfer and measure the heat flux and the convective heat transfer coefficient. **[a,b,d,i]**
- 2. Measure the heat flux and the convective heat transfer coefficient during condensation. [a,b,d,i]
- 3. Investigate the sensible heating and study the humidification of moist air. [a,b,d,i]
- 4. Investigate the cooling and dehumidification process of moist air[a,b,d,i]
- 5. Demonstrate the hot water heating system and identify all its components and compare between different types of radiators. **[a,b,d,i]**
- 6. Demonstrate the refrigeration cycle as a part of the air-conditioning systems and calculate the coefficient of performance for both refrigerates and heat pumps. **[a,b,d,i]**
- 7. Tabulate and evaluate the radiation energy and study solar collectors performance. [a,b,d,i]
- 8. to demonstrate the components of spark ignition engine and Study the full load performance of a single cylinder four stroke spark ignition engine of an internal combustion engine . **[a,b,d,i]**
- 9. Calculate the equivalence ratio of mixture and determine its type. [a,b,d,i]
- **10. Design and build a device to run an experiment in Thermal science field. [a,b,d,e,g,k]**
- **11.** Write and present reports. [d,g,k]

Grading Plan:		
Reports:	30 points	
Midterm Exam:	30 points W	ed. 11/12/2020
	2:00-3:30	
Final Exam:	40 points	TBA

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution			
	General Engineering Student Outcomes				
(a)	Ability to apply mathematics, science and engineering principles.	L			
(b)	Ability to design and conduct experiments, analyze and interpret data.	Н			
(c)	Ability to design a system, component, or process to meet desired needs.				
(d)	Ability to function on multidisciplinary teams.	М			
(e)	Ability to identify, formulate and solve engineering problems.				
(f)	Understanding of professional and ethical responsibility.				
(g)	Ability to communicate effectively.	L			
(h)	The broad education necessary to understand the impact of engineering solutions in a global and societal context.				
(i)	Recognition of the need for and an ability to engage in life-long learning.	L			
(j)	Knowledge of contemporary issues.				
(k)	Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.	L			
	H=High, M = Medium, L =Low				

Prepared by:

Dr. Mohammad Tarawneh