

The Hashemite University Faculty of Engineering Course Syllabus

Course Title: HEAT TRANSFER Course Number: 110402324

Department: Mechanical Engineering **Designation:** Compulsory

Prerequisite(s): (Applied maths:110406260, Thermodynamics-I: 110402221, Fluid Mechanics:110402310)

Instructor: Dr. Ahmad ALQANANWAH **Instructor's Office:** E3114

Instructor's e-mail: Ahmad.alqan@gmail.com

Office Hours: See posted office hours

Time: Sec #(1) 18:45-20:00 S,M,T,W Class Room: E2017/Online

Course description: Ch1. Introduction.

Ch2. Introduction to Conduction.

Ch3. One-Dimensional, Steady-State Conduction. Ch4. Two-Dimensional, Steady-State Conduction.

Ch5. Transient heat conduction. Ch6. Introduction to Convection.

Ch7. External Flow. Ch8. Internal Flow. Ch9. Free Convection.

Ch10. Boiling and Condensation. Ch11. Heat exchanger analysis.

Ch12. Radiation: Processes and Properties. Ch13. Radiation exchange between surfaces.

Textbook(s): Heat and Mass Transfer: Fundamentals & Applications, 5th Edition, by

Yunus A. Cengel & Afshin J. Ghajar McGraw-Hill, 2015.

** Soft copies of of the 2nd and 5th editions are available on moodle

Other required Fundamentals of Heat and Mass Transfer, F.P. Incropera, D.P. DeWitt, T.L.

material: Bergman, and A.S. Lavine, 7th Edition (John Wiley & Sons)

Primary Course Students will learn to model, analyze, and design heat transfer components

Objective: and systems by applying the appropriate rate equations (for conduction,

convection, and radiation) with the principle of energy conservation

Class schedule: Four class sessions each week; 60 minutes each

Grading Plan: First Exam (15 Points) Wil

:	First Exam	(15 Points)	Will be announced later
	Second Exam	(15 Points)	Will be announced later
	Quizzes & Homework's	(20 Points)	4 quizzes will be conducted through
			moodle platform
	Final Exam	(50 points)	

COURSE OBJECTIVES

- 1. Identify and understand the various mechanisms of heat and mass transfer that characterize a given physical system. (e)
- 2. Formulate models for heat conduction processes. Apply analytical and numerical methods to solve one- and two-dimensional conduction problems. (a)
- 3. Combine thermodynamics and fluid mechanics principles to analyze heat convection processes. (e)
- 4. Integrate radiation aspects into real-world global heat transfer problems. (h, i)
- 5. Use computer technology, methods and languages to write programs to solve complex heat transfer models. (k, g)
- 6. Analyze and design complex heat transfer applications, such as heat exchangers. (c)
- 7. The student should be able to apply the engineering design procedure to a problem. (c)
- 8. The project should help the student develop skills that would apply to lifelong learning. (i)

ABET a-k	V	ME Program Outcomes	
a	$\sqrt{}$	Graduates must have the ability to apply knowledge of mathematics and	
		science to solve engineering problems.	
b		Graduates must have the ability to design and conduct experiments as well	
		as to analyze and interpret data.	
c		Graduates must have the ability to design a system, component, or process	
		to meet desired needs within realistic constraints such as economic,	
		environmental, social, political, ethical, health and safety, manufacturability,	
		and sustainability.	
d		Graduates must have the ability to function on multidisciplinary teams	
e		Graduates must have the ability to identify, formulate, and solve	
		fundamental engineering problems.	
f		Graduates must have an understanding of professional and ethical	
		responsibility	
g	V	Graduates must have the ability to communicate effectively.	
h		Graduates must possess the broad education necessary to understand the	
		impact of engineering solutions in a global, economic, environmental, and	
		societal context.	
i		Graduates must recognize the need for, and possess an ability to engage in,	
		life-long learning.	
j		Graduates must possess knowledge of contemporary issues.	
k		Graduates must have the ability to use techniques, skills, and modern	
		engineering tools necessary for engineering practice.	

Prepared by: Dr. Ahmad ALMiGDADY Date: 29/06/2020