

The Hashemite University Faculty of Engineering Course Syllabus Department of Mechanical Engineering

Course Title:	Fluid Mechanics Lab 1 (0-3-0)	Course Number: 110402313
Designation:	Compulsory	Prerequisite(s): 110402310
Instructor:	Dr. Ali Jawarneh	Instructor's e-mail: jawarneh@hu.edu.o
Office Hours:	10:00 – 12:00: Sun. & Tue., 11:00	– 12:30: Mon. & Wed.

Course Description (catalog): Experimental methods and measurements: fluid properties, orifice and jet flow, Bernoulli's theorem-flow through a venture tube, impact of water jet, losses in pipes and fittings, comparative fluid measurements, hydrostatic pressure, flow visualizations and turbulent pipe flow, performance of pumps.

Textbook(s) and/or Other Supplementary Materials:

Fluid Mechanics laboratory Manual.

References:

- 1. Engineering Fluid Mechanics, C.T. Crowe, 9th International Edition, Wiley, USA, 2009, ISBN: 978-0-470-40943-5
- 2. A Brief Introduction to Fluid Mechanics, 3rd Edition, D. F. Young, B. R. Munson, and T. H. Okiishi, Wiley, USA, 2004. ISBN: 978-0-470-09928-5
- Fluid Mechanics, 2nd Edition, Yunus A. Cengel, and John M. Cimbala, McGraw-Hill, USA, 2010, ISBN: 13-9780073529264
- 4. Introduction to Fluid Mechanics, 7th Edition, R.W. Fox, P.J. Pritchard, A.T. McDonald, Wiley, USA, 2008, ISBN: 978-0-471-74299-9.

Major Topics Covered:

Topic	# Weeks	# Contact hours*
Experiment 1:	1	3
- Measurement of density and specific gravity		
- Calibration of Bourdon gauge		
Experiment 2:	1	3
- Measurement of viscosity using falling ball viscometer		
- Saybolt viscometer		
Experiment 3: Center of pressure on a plane surface	1	3
Experiment 4: Orifice and Jet flow	1	3
Experiment 5:	1	3
- Laminar and Turbulent flow visualization using Osborne Reynolds apparatus		
- Flow field Diagnosis with flow visualization technique		
MID EXAM Material included[Exp. 1, 2, 3, 4 and 5]	1	3
Experiment 6 : Bernoulli's theorem application	1	3
Experiment 7: Impact of water jet	1	3
Experiment 8 : Fluid friction in pipes and losses from fittings	1	3
Experiment 9 : Pumps in series and parallel	1	3
Experiment 10 : Lift and Drag measurement of aerofoil and velocity distribution in wind tunnel	1	3
Experiment 11: Pump test set	1	3

Design of an experiment	3	9
Total	15	45

*Contact hours include lectures, quizzes and exams

Specific Outcomes of Instruction (Course Learning Outcomes):

After completing the course, the student will be able to:

- 1. Be familiar and measure experimentally some properties of fluids. [a,b,d, e,g,k]
- 2. Determine the position of the center of pressure on partially or entirely submerged object in the water. [a,b,d, e,g,k]
- 3. Investigate the characteristics of flow through different obstacles such as: orifice and venturi meter. [a,b,d, e,g,k]
- 4. Measure force resulted by a water jet when it strikes a target and compares the results with the theoretical values that calculated from the momentum equation. [a,b,d, e,g,k]
- 5. Demonstrate the pressure loss due to friction in pipes, valves and other fittings and to determine experimentally the relationship between friction factor and Reynolds number. [a,b,d, e,g,k]
- 6. Study the performance of parallel and series pump. [a,b,d, e,g,k]
- 7. Study Lift and drag of an airfoil and velocity distribution in wind tunnel. [a,b,d, e,g,k]
- 8. Design and build a device to run an experiment in fluid mechanics field. [a,b,d,e,g,k]
- 9. Write and present reports. [d,g,k]

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution	
	General Engineering Student Outcomes		
(a)	Ability to apply mathematics, science and engineering principles.	L	
(b)	Ability to design and conduct experiments, analyze and interpret data.	Н	
(c)	Ability to design a system, component, or process to meet desired needs.		
(d)	Ability to function on multidisciplinary teams.	L	
(e)	Ability to identify, formulate and solve engineering problems.	Н	
(f)	Understanding of professional and ethical responsibility.		
(g)	Ability to communicate effectively.	М	
(h)	The broad education necessary to understand the impact of engineering solutions in a global and societal context.		
(i)	Recognition of the need for and an ability to engage in life-long learning.		
(j)	Knowledge of contemporary issues.		
(k)	Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.	L	

Grading Plan:	Mid Exam	25 Points	Sun. 1
<u>-</u>	DOE	15 Points	
	Reports	25 points	
	Final exam	40 points	
		1	

Sun. 19/03/2017 [14:00 ~ 15:45]

General Notes:

Beware of Plagiarism: copying and handing in for credit someone else's work Any plagiarism case will result in an automatic 'F' for the course

Prepared by:

Dr. Ali Jawarneh

Date: 30 Sep 2020