

The Hashemite University Faculty of Engineering Civil Engineering Program Course Syllabus

Course Title:	Steel Structures	Course Number:110401425
Designation:	Compulsory	Prerequisite(s): 110401315
Instructor:	Dr. Bilal Abu Alfoul	Instructor's e-mail: <u>bilala@hu.edu.jo</u>

Office Hours:

Course Description (catalog): This is an introductory course to design steel structures using the LRFD method. Topics covered include tension members; compression members; beam design; serviceability requirements; beam-column design; bolted and welded connections.

Textbook(s) and/or Other Supplementary Materials:

McCormac and Nelson, Structural Steel Design - LRFD Method, Latest Edition, Prentice Hall.

Manual of Steel Construction, Latest Edition, American Institute of Steel Construction.

References:

Manual of Steel Construction, Latest Edition, American Institute of Steel Construction.

Major Topics Covered:

Topics	No. of Weeks	Contact hours*
Introduction to Structural Steel Design	1	3
Specifications, Loads and Methods of Design	1	3
Tension Members	3	9
Compression Members	3	9
Flexural Members	3	9
Beam- Columns	2	6
Connections	2	6
Total	15	45

*Contact hours include lectures, quizzes and exams

Specific Outcomes of Instruction (Course Learning Outcomes):

After completing the course, the student will be able to:

1. Analyze and design of tension members, compression members, flexural members, beam – columns and simple and eccentric connections in accordance with the latest AISC-LRFD Specification. (1, 2)

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution			
	General Engineering Student Outcomes				
(1)	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	H (50)			
(2)	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors	H (50)			
H=High, M = Medium, L =Low					

Grading Plan:	1st Exam 2nd Exam Final exam	30 Points 30 Points 40 Points	Will be announced by the registrar
General Notes:	Beware of Plagiarism: copying and handing in for credit someone else's work Any plagiarism case will result in an automatic 'F' for the course		
Prepared by:	Dr. Bilal Ab	u Alfoul	Date: October 1st 2022