Hashemite University	Paulty of Sectors 1995	Linear Algebra (1) (110101241) 3 Credit Hours
Faculty of Science		Pre-requisite: None
Department of Mathematics	Course Syllabus	Summer Summer 2021/2022

Course Information				
Lecture's Time				
Lecture's Room				
Instructor	Dr. Abdallah Shihadeh			
Office Location	مبنى الرياضيات 123			
Office Hours				
Text Book : Elementary Linear Algebra with Applications, by Howard Anton edition: 9th or 11th				
References(s)	 (1) Linear Algebra, an Introduction, <i>Richard Bronson</i> (2) Linear Algebra, <i>S. Lang</i> (3) Applied Linear Algebra, <i>B. Noble, J.W. Daniel.</i> 			
Grading Policy:				
Theory				

Theory	
First Exam	30%
Second Exam	30%
Final Exam	40%

Course Objectives

To present the fundamentals of linear algebra. To become familiar with the basic concepts of matrix algebra, vector spaces linear transformations, determinants, eigenvalues and eigenvectors, diagonalization, orthogonality, and projections.

Teaching and Learning Methods

- 1. Introducing new definitions and using examples to illustrate new concepts.
- 2. Proving the theorems which constitute the core of the course.
- 3. Solving some examples and assigning homework's.
- 4. Discussing some of the students' solutions of some sample assignment.
- 5. Making a discussion of the problems of each exam.

Chapter	Section	Торіс	Week
		Systems of Linear Equations and Matrices	
	1.1	Introduction to System of Linear Equations	
	1.2	Gaussian Elimination	
Ι	1.3	Matrices and Matrix Operations	
	1.4	Inverses, Rules of Matrix Arithmetic	
	1.5	Elementary Matrices and a method for finding A ⁻¹	
	1.6	Further results on Systems of Equations and Invertibility	
	1.7	Diagonal, Triangular, and Symmetric Matrices	
		Determinants	
	2.1	The Determinant Function	
II	2.2	Evaluation Determinants by Row Reduction	
	2.3	Properties of Determinant Function	
	2.4	Cofactor Expansion; Cramer's Rule	
		General Vector Spaces	
	5.1	Real Vector Spaces	
	5.2	Subspaces	
v	5.3	Linear Independence	
v	5.4	Basis and Dimension	
	5.5	Row space, Column space, and Null space	
	5.6	Rank and Nullity	
		Inner Product Spaces	
VI	6.1	Inner Products	
	6.2	Angle and Orthogonality in inner product spaces	
	6.3	Orthogonal Bases; Gram-Schmidt Process	
	6.5	Orthogonal Matrices; Change of Basis	
		Eigenvalues; Eigenvectors	
	7.1	Eigenvalues and Eigenvectors	
VII	7.2	Diagonalization	
	7.3	Orthogonal Diagonalizations	
		Linear Transformations	
	8.1	General Linear Transformations	
VIII	8.2	Kernel and Range	
	8.3	Inverse Linear Transformations	
	8.4	Matrices of general Linear Transformations	
	8.5	Similarity	

Attendance is absolutely mandatory. Students who miss a 15% class sessions without a compelling excuse will qualifies the student to be dismissal.