The Hashemite University Department of Mathematics Pre-requisite: 101201 **Advanced Calculus** (101401) **3 Credit Hours** Summer Semester 2021/2022 ## **Course Syllabus** | Course Information | | | | | | | |--------------------|---|--|--|--|--|--| | Lecture's Time | 9:20-10:35 Sun, Mon, Tue, Wed. | | | | | | | Lecture's Room | ل.ز 134 | | | | | | | Instructor | Dr. Mohammad Safi | | | | | | | Office Location | Math 316 | | | | | | | Office Hours | By appointment | | | | | | | Text Book | Advanced Calculus, by Wilfred Kaplan ,5th edition. | | | | | | | References | (1) Advanced Calculus and its Applications to the Engineering and Physical Sciences by J. Amazigo and L. Rubenfeld (1980).(2) Calculus of Several Variables, by S. Lang.(3) Vector Calculus, by J. Marsden and A. Tromba. | | | | | | | Website | http://staff.hu.edu.jo/safi | | | | | | ## **Grading Policy and Exam Material:** | | Evaluation | Exam Material | | |-------------|------------|-----------------------|--| | First Exam | 30 % | Chapter 2 | | | Second Exam | 30 % | Chapter 3 & Chapter 4 | | | Final Exam | 40 % | All Chapters | | ## **Teaching and Learning Methods** - Illustrating each new concept by examples. - Illustrating theorems which constitute the core of the course. - Solving some examples and assigning homework. - Discussing some of the student's solutions of some homework problems. - Making exams followed by a discussion of the problems of each exam. | Week | Section | Topics | | | | | |------|---|---|--|--|--|--| | ek | tion | Topics | | | | | | | | Chapter 2: Differential Calculus of Functions of Several | | | | | | | | Variables | | | | | | | 2.1 | Functions of Several Variables | | | | | | | 2.2 | Domains and Regions | | | | | | 1 | 2.3 | Functional Notation * Level Curves and Level Surfaces | | | | | | ' | 2.4 | Limits and Continuity | | | | | | | 2.5 | Partial Derivatives | | | | | | | 2.6 | Total Differential * Fundamental Lemma | | | | | | | 2.7 | Differential of Functions of n Variables * The Jacobian Matrix | | | | | | | 2.8 | Derivatives and Differentials of Composite Functions | | | | | | : | 2.9 | The General Chain Rule | | | | | | 2 | 2.10 | Implicit Functions | | | | | | | 2.12 | Inverse Functions *Curvilinear Coordinates | | | | | | | 2.14 | The Directional Derivative | | | | | | | 2.15 | Partial Derivatives of Higher Order | | | | | | | 2.16 | Higher Derivatives of Composite Functions | | | | | | | 2.18 | Higher Derivatives of Implicit Functions | | | | | | 3 | 2.19 | Maxima and Minima of Functions of Several Variables | | | | | | | 2.20 Extrema for Functions with Side Conditions * Lagrange Multipliers | | | | | | | | | Chapter 3: Vector Differential Calculus | | | | | | | 3.2 | Vector Fields and Scalar Fields | | | | | | 3 | 3.3 | The Divergence of a Vector Field | | | | | | | 3.4 | The Divergence of a Vector Field | | | | | | | 3.5 | The Curl of a Vector Field | | | | | | 4 | 3.6 | Combined Operations Outhorized Coordinates in Chase Outhorized Coordinates | | | | | | | 3.7 Curvilinear Coordinates in Space m Orthogonal Coordinates Chapter 4: Integral Coloulus of Eupotions of Soveral Ver | | | | | | | | 4.0 | Chapter 4: Integral Calculus of Functions of Several Variables | | | | | | | 4.3 | Double Integrals Triple Integrals and Multiple Integrals in Consum. | | | | | | 4 | 4.4 | Triple Integrals and Multiple Integrals in General | | | | | | | 4.5
4.6 | Integrals of Vector Functions Change of Veriables in Integrals | | | | | | | 4.7 | Change of Variables in Integrals Arc Length and Surface Area | | | | | | 5 | 4.7 | Improper Multiple Integrals | | | | | | | 4.8 | Integrals Depending on a Parameter * Leibnitz's Rule | | | | | | | 7.7 | Chapter 5: Vector Integral Calculus | | | | | | _ | 5.2 | Line Integrals in the Plane | | | | | | 5 | 5.3 | Integrals with Respect to Arc Length Basic Properties of Line integrals | | | | | | | 5.4 | Line Integrals as Integrals of Vectors | | | | | | 6 | 5.5 | Green's Theorem | | | | | | | 5.6 | Independence of Path * Simply Connected Domains | | | | | | | 5.7 | Extension of Results to Multiply Connected Domains | | | | | | 7 | 5.8 | Line Integrals in Space | | | | | | | 5.9 | Surfaces in Space * Orientability | | | | | | | 5.10 | Surface Integrals | | | | | | | 5.11 | The Divergence Theorem | | | | | | | 5. | Stokes's Theorem | | | | |