Hashemite University

Faculty of Science

Department of

Mathematics

Website

Course Syllabus

Partial Differential Equations

(11101341) 3 Credit Hours

Pre-requisite: 11101203

Summer semester 2021/2022

Madicilatics			2021/2022	
		Course Information		
l a aturala Tira				
Lecture's Time	10:40-1	10:40-12:55		
Lecture Room	ل.ز 102			
Instructor	Dr. Mohammad Safi			
Office Location	Math 3	16		
Office Hours	by appointment			
Text Book : Partia	al differer	ntial equations for scientist and e	ngineers, Tyn Myint-U	
and				
Loken	ath Depr	nath, Birkhauser, 4 th edition, 2007.	•	
References(s)	1.	Fourier series and integrals of bo	undary value problems,	
		by		
		J. Ray Hanna		
	2.	Partial differential equations for s	scientist and engineers,	
		Stanely J. Farlow, Dover Publicati	on, 3 rd edition, 1993.	

Grading Policy:		Participation and Exams:
1 st Exam	30%	Attendance is absolutely mandatory.
2 nd Exam	30%	Students who miss the class sessions
Other	0%	without a compelling excuse will qualify
Final Exam	40%	the student to be dismissal.

http://www.staff.hu.edu.jo/safi

Course Objectives

To show what partial differential equations are, and why they are useful and how they are solved with emphasis on the most important analytic tools in solving partial differential equations using: exponential method to find the general solution, separation of variables and Integral transforms.

Teaching and Learning Methods

Introducing new definitions and using examples to illustrate new concepts.

Giving examples and applications for some theorems and corollaries.

Giving a sample assignment for each section.

Discussing some of the students' solutions of some sample assignment.

Course Contents

Topics	Week	
thogonal Set of Functions		
Two-Point Boundary Value Problems		
Eigenvalue Problems		
Sturm-Liouville Theory		
Fourier Series		
Introduction to Partial Differential Equations		
Mathematical Problems		
Linear operators		
Superposition		
Mathematical Models: Vibrating String and Membrane, Conduction of Heat,	3	
Waves in Elastic Medium.		
Classification of Second Order Equations		
Canonical Forms		
General Solution	4	
Separation of the Variables		
The Vibrating String Problem		
The Heat Conduction Problem		
Laplace Equation for a Rectangle	5	
Laplace Equation for a Circle		
Laplace Equation for a Circular Annulus		
Poisson Equation		
	6	
Transforming Nonhomogeneous Problems into Homogeneous Ones		
Solving More Complicated Problems by Separation of Variables		
Integral Transforms Methods	7	
The Fourier Transform		
The Finite Fourier Transforms (Sine and Cosine Transforms)		
Fourier Transforms and its applications to PDEs		

The Laplace Transform
The Laplace Transform and its applications to PDEs