

The Hashemite University Faculty of Science Course Description

Department : Mathematics				
Year : 2021/2022		Semester : Second		
Course Information				
Course Title	Calculus (2)			
Course Number	110101102			
Course Credits	3 Hours			
Course Time& section				
Course Duration	One semester			
Prerequisite(s)	110108101			
Instructor				
Office Location				
Office Hours				
E- mail				
Text Book				
Title	Calculus, Early Transcender	ntals		
Author	James Steward			
Publisher	Cengage Learning.			
Year	2012			
Edition	7 th			
References(s)	1. Calculus, by Thomas and publishing Company	Finney, 1996, Addison - Wesley		
	2. Calculus, Early Transcer 2010, John Wiley and Son	ndentals by Anton,Bivens and Davis as, Inc		
	Calculus with Analytic Ge Row publishers.	eometry, by Leithold, 1986, Harper and		
Grading plan				
First Exam		25 %		
Second Exam		25 %		
Final Exam		50 %		

Course Objectives

To study some applications of definite integral, methods of evaluating integrals, infinite series, polar coordinates and conic sections.

Teaching and Learning Methods			
Solving problems with discussion.			

Course Contents		
Topics	Section	Week

Ch7: Techniques of Integration		
CITA. Techniques of Theyration	7.1	1
Integration by Douts	7.2	•
Integration by Parts	/.2	
Trigonometric Integrals	7.3	2
Trigonometric Substitutions	7.3	L
Integration of Rational Functions by Partial Fractions	7.4	3
Strategy for Integration	7.5	
Improper Integrals	7.8	4
Ch 8: Further Applications of Integration		5
	8.1	
Arc Length	8.2	
Area of A surface of Revolution		
Ch10: Parametric Equations and Polar Coordinates		
Curves Defined by Parametric Equations	10.1	
Polar Coordinates	10.3	6
Area and Lengths in Polar Coordinates	10.4	7
Ch11: Infinite Sequences and Series	11.1	8
Sequences		
Series	11.2	9
The Integral Test and Estimates of Sum	11.3	10
The Comparison Test	11.4	10
Alternating Series	11.5	11
Absolute Convergence and the Ratio and Root Tests	11.6	12
Strategy for Testing Series	11.7	
Power Series	11.8	13
Representation of Functions as Power Series	11.9	
Taylor and Maclaurin Series	11.10	14
Applications of Taylor Polynomials	11.11	15